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We show that new families of diffraction-free nonparaxial accelerating optical beams can be generated

by considering the symmetries of the underlying vectorial Helmholtz equation. Both two-dimensional

transverse electric and magnetic accelerating wave fronts are possible, capable of moving along elliptic

trajectories. Experimental results corroborate these predictions when these waves are launched from either

the major or minor axis of the ellipse. In addition, three-dimensional spherical nondiffracting field

configurations are presented along with their evolution dynamics. Finally, fully vectorial self-similar

accelerating optical wave solutions are obtained via oblate-prolate spheroidal wave functions. In all

occasions, these effects are illustrated via pertinent examples.
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Since the prediction and experimental observation of
optical Airy beams [1], there has been a flurry of activities
in understanding and utilizing accelerating nondiffracting
wave fronts [2–10]. As first indicated within the context of
quantum mechanics [11], Airy wave packets tend to accel-
erate even in the absence of any external forces—a prop-
erty arising from the inertial character of free-falling
systems in a gravitational environment [12]. Interestingly,
Airy waves represent the only possible self-similar accel-
erating solution to the free-particle Shrödinger equation
when considered in one dimension. In optics, this peculiar
class of waves is possible under paraxial diffraction con-
ditions provided that they are truncated so as to have a
finite norm [1]. In this realm, the intensity features of Airy
beams propagate on a parabolic trajectory and exhibit self-
healing properties, desirable attributes in a variety of
physical settings [2]. In the last few years, such accelerat-
ing beams have been utilized in inducing curved plasma
filaments [13], synthesizing versatile bullets of light
[14], carrying out autofocusing and supercontinuum
experiments [15], as well as manipulating microparticles
[2]. The one-dimensional nature of these solutions
was also successfully exploited in plasmonics [16–19].
Interestingly, shape-preserving accelerating beams can
also be found in nonlinear settings, with Kerr, saturable,
quadratic, and nonlocal nonlinearities [20–22]. In principle
accelerating beams can also be generated though caustics
[6,7]. Yet, such wave fronts are by nature not self-similar
and thus cannot propagate over a long distance, a necessary
feature to reach large deflections.

Until recently, it was generally believed that shape-
preserving accelerating beams belong exclusively to the
domain of Shrödinger-type equations [11], which for gen-
eral waves (e.g., electromagnetic, acoustic, etc.) will only
be valid under paraxial conditions. Quite recently, how-
ever, nonparaxial, shape-preserving accelerating beams in

the form of higher-order Bessel functions have been found
as solutions of Maxwell equations [23] and experimentally
demonstrated [24,25]. This new family of waves represents
exact vectorial solutions to the two-dimensional Helmholtz
equation, and as such they follow circular trajectories (on a
quadrant) on which the magnitude of acceleration is con-
stant. Unlike paraxial Airy beams, these nonparaxial waves
can in principle intersect the propagation axis at 90�, thus
considerably expanding their bending horizon. Such
behavior can be particularly useful in many and diverse
applications such as in nanophotonics where nonparaxial-
ity is absolutely necessary. Apart from optics, these solu-
tions can be similarly realized in other electromagnetic
frequency bands as well as in acoustics. Given that Airy
beams are unique within 1D paraxial optics, the question
naturally arises if the aforementioned higher-order Bessel
accelerating diffraction-free waves represent the only pos-
sible solution. In other words, are there any other vectorial
solutions to the full-Maxwell equations that could in gen-
eral accelerate along more involved trajectories? If so, can
they be extended in the three-dimensional vectorial regime,
and are they again self-healing in character?
In this Letter, we show that indeed other families of

accelerating nondiffracting wave solutions to Maxwell’s
equations also exist. By utilizing the underlying symme-
tries of the corresponding Helmholtz problem, we demon-
strate both theoretically and experimentally self-healing
vectorial wave fronts—capable of following elliptic trajec-
tories and hence experiencing a nonuniform acceleration.
The existence of such beams clearly indicates that shape
preservation is not an absolute must in attaining accelerat-
ing diffraction-free propagation. In addition, we theoreti-
cally explore the dynamics of self-similar accelerating
3D vectorial spherical wave functions along with their
power flow characteristics. Other solutions of such classes
of 3D accelerating ring wave fronts are also obtained via
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oblate-prolate spheroidal wave functions. Our results may
pave the way toward synthesizing more general classes of
accelerating waves for applications in optics and
ultrasonics.

We begin our analysis by first considering the Helmholtz

equation in two dimensions ð@xx þ @yy þ k2Þf ~E; ~Hg ¼ 0,

that governs both the electric and magnetic field compo-
nents of an optical wave. For the transverse-electric (TE)
case, the electric field involves only one component, i.e.,
~E ¼ Ezðx; yÞẑ from where the magnetic vectorsHx,Hy can

be readily deduced from Maxwell’s equations for a given
wave number k ¼ !n=c. By introducing elliptic coordi-
nates, the Helmholtz problem takes the form

�
2

f2ðcosh2u� cos2vÞ
�
@2

@u2
þ @2

@v2

�
þ k2

�
Ez ¼ 0; (1)

where x ¼ f coshu cosv, y ¼ f sinhu sinv with u 2
½0;1Þ, and v 2 ½0; 2�Þ. In this representation, f represents
a semifocal distance and is associated with the ellipticity of
the system. Equation (1) is in turn solved via standard
separation of variables, e.g., Ez ¼ RðuÞSðvÞ in which case
one obtains the following ordinary differential equations:

�
d2

dv2
þ ða� 2q cos2vÞ

�
SðvÞ ¼ 0; (2a)

�
d2

du2
� ða� 2q cosh2uÞ

�
RðuÞ ¼ 0; (2b)

with the dimensionless quantity q ¼ f2k2=4. On the other
hand, the parameter a in Eqs. (2) can be obtained from a
sequence of eigenvalues amðm ¼ 1; 2; . . .Þ corresponding to
the Mathieu equation (2a). From this point on, both the
angular SmðvÞ and radial RmðuÞ Mathieu functions can be
uniquely determined. A possible elliptic solution to these
equations is expected to display a circulating power flow in
the angular direction. This can be achieved through a linear
superposition of the standard solutions to Eqs. (2) with
constant real coefficients A and B [26],

Em
z ðu; v;qÞ ¼ Acemðv; qÞMcð1Þm ðu; qÞ

þ iBsemðv;qÞMsð1Þm ðu;qÞ; (3)

where cem and sem represent even and odd angular

Mathieu functions of order m while Mcð1Þm and Msð1Þm stand
for their corresponding radial counterparts (of the first
kind). Figures 1(a) and 1(b) show a two-dimensional plot
of these elliptic modes for two different values of q when
m ¼ 8 andA ¼ B ¼ 1. As onewould expect, the ellipticity
of the light trajectory increases with the semifocal parame-
ter f. What is also clearly evident from Figs. 1(a) and 1(b)
is the fact that the intensity of the rings does not remain
constant in the angular domain. In other words, unlike other
families of diffraction-free beams, these elliptical beams
can propagate in an accelerating fashion up to 90� without
exactly preserving their shape. Note that the power density,

especially that of the first lobe, tends to increase along the
major axis while it reaches its lowest value when it is
passing the minor axis of the ellipse. Interestingly, this
behavior persists even under dynamic conditions, i.e.,
when such a field configuration is launched on axis.
Given that all optical diffraction-free arrangements
(including those mentioned here) possess, strictly speak-
ing, an infinite norm, in practice they have to be apodized in
order to be experimentally observed. Figure 1(c) depicts an
elliptic trajectory when a weakly truncated (using a
Gaussian apodization) version of the field profile in
Eq. (3) is used at v ¼ 0, e.g., when launched from the
major axis. These simulations are carried out for � ¼
1 �m,m ¼ 150, and f ¼ 31:8 �m provided that thewidth
of the first lobe is approximately 550 nm. In this case, the
intensity jEzj2 of the main lobe follows an ellipse, starting
at 34 �m and eventually reaching 12 �m, on the y axis.
On the other hand, when this same beam is launched from
the y axis [v ¼ �=2, in Eq. (3)] the main lobe meets the
major axis at 34 �m [Fig. 1(d)]. Unlike the previously
reported Bessel wave fronts propagating on circular trajec-
tories [23], these beams can exhibit diffraction-free behav-
ior in spite of the fact that their intensity features are
no longer invariant during propagation because of their
varying acceleration. Figure 1(d) also indicates that the
intensity of the lobes tends to eventually increase before
intersecting the x axis. Conversely, it decreases when

FIG. 1 (color online). Intensity profiles of elliptic modes of
order m ¼ 8 when (a) q ¼ 10 and (b) q ¼ 20. (c) Propagation
pattern of a weakly truncated Mathieu beam when it is launched
from the major axis, when m ¼ 150 and q ¼ 104, starting from
x ¼ 34 �m and reaching y ¼ 12 �m on the minor axis.
(d) Same Mathieu beam as in (c), launched from the minor
axis, starting at y ¼ 12 �m and reaching x ¼ 34 �m. In (d),
note the increase in intensity at the apogee point.
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reaching the y axis for the case shown in Fig. 1(c).
Interestingly, this response is in agreement with the results
of Figs. 1(a) and 1(b) when taken over the first quadrant.
The variation of the intensity levels along these elliptic
trajectories can be better understood from power conser-
vation requirements. Given that in elliptic coordinates, a
given lobe moves on a u ¼ const trajectory, then, as u
increases (needed for establishing a broad wave front),
the encompassing region becomes almost circular. As a
result, this same power flow happens to be constricted
when crossing the major axis, hence elevating the intensity
levels within the beam. Conversely, the intensity drops in
the other regime [Fig. 1(c)]. To demonstrate that these
beams remain actually diffraction-free, we next examine
their self-healing properties. Figure 2(a) depicts the propa-
gation dynamics of such a Mathieu wave front when its
main lobe is initially obstructed [Fig. 2(b)]. The parameters
used are the same as those of Fig. 1(c). The self-healing
mechanism is here clearly evident after propagating a
distance of 5 �m.

In our experiments, elliptic Mathieu beams were gener-
ated in the Fourier domain by appropriately imposing a
phase function through a spatial light modulator. In this
setup a broad Gaussian beam from a continuous-wave � ¼
633 nm laser source was used. The resulting phase-
modulated wave was then demagnified and projected
onto the back focal plane of a 60� objective lens in order
to produce the Mathieu function in the spatial domain.
Subsequently the evolution of this beam was monitored
along the propagation direction using a 60� objective lens
and a CCD camera. Figure 3(a) depicts experimental
results associated with the intensity profile of a Mathieu
elliptic beam when m ¼ 1400 and q ¼ 2:5� 105. In this
case, the phase mask was judiciously designed so as to
launch this elliptic beam toward the major axis (where
apogee was reached) under the constraint of a limited
numerical aperture (� 0:7), arising from the first lens in
the system. This beam was found to intersect again the
horizontal launching line after 200 �m. Conversely, when
this same beam was launched in a complementary fashion,

its apogee was attained on the minor axis, Fig. 3(b). In both
cases the elliptic trajectory is clearly apparent. The fact
that the intensity of this elliptic beam is maximum on
the major axis is also evident, in accord with theoretical
predictions [Fig. 1(d)]. These results are in good agree-
ment with their corresponding simulations presented in
Figs. 3(c) and 3(d).
Apart from the aforementioned two-dimensional accel-

erating diffraction-free solutions, other more involved
three-dimensional accelerating field configurations also
exist. To demonstrate this possibility, we consider the
Helmholtz equation in its more general form. To treat
this problem we introduce auxiliary magnetic and electric
vector potentials, A and F, through which one can recover
the electrodynamic field components [27], i.e.,

E ¼ �r� F� 1

i!�
r�r�A;

H ¼ r�A� 1

i!�
r�r� F:

(4)

By employing a proper Lorentz gauge along with their
respective scalar potentials, one arrives at a vectorial
Helmholtz equation for the vector potentials, r2fA;Fg þ
k2fA;Fg ¼ 0. Pertinent solutions to the underlying
Maxwell equations can be obtained by separately consid-
ering transverse electric and transverse magnetic field
arrangements. For example if we set A ¼ 0, F ¼ ŷc ,
this leads to a transverse electric solution with respect to
y, i.e., Ey ¼ 0. On the other hand, if A ¼ ŷc , F ¼ 0, a

transverse magnetic field mode is established with respect
to y, implying that the y component of magnetic field is
now zero. In both cases the scalar function c satisfies
r2c þ k2c ¼ 0.
In spherical coordinates, this latter scalar Helmholtz

problem can be directly solved. More specifically, we find

c ðx; y; zÞ ¼ jnðkrÞPm
n ðcos�Þeim�; (5)

where jnðxÞ represents spherical Bessel functions of the
first kind, of order n, Pm

n ðxÞ stands for associated Legendre

FIG. 2 (color online). (a) Self-healing property of a truncated
Mathieu beam (b), when it is launched from the major axis, with
m ¼ 150, q ¼ 104, and with its main lobe initially truncated.

FIG. 3 (color online). Observed intensity profile of an elliptic
Mathieu beam with m ¼ 1400 and q ¼ 2:5� 105 when prop-
agating (a) toward the major axis and (b) minor axis. (c),
(d) Corresponding theoretical simulations for the experimental
results in (a),(b).
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polynomials of degree n with�n � m � n, and k denotes
the free space wave number. From here, fE;Hg can be
deduced from Eqs. (4) depending on whether the mode is
TE or TM. Figures 4(a) and 4(b) show two-dimensional
profiles of the electric vector potential F associated with a
TE field configuration when m ¼ n ¼ 50 and n ¼ 50,
m ¼ 49, respectively. The corresponding diffraction-free
dynamics resulting from apodized versions of these beams
are shown in Figs. 4(c) and 4(d) when launched in the x-z
plane. These five-component vectorial waves propagate in
a self-similar fashion within the first quadrant of the x-y
plane, by revolving around the z axis. The TM case can be
similarly analyzed.

Additional families of three-dimensional accelerating
solutions also exist in other coordinate systems. For ex-
ample, by adopting prolate spheroidal coordinates (�, �,
�), the scalar function c can be determined and is given by
c ¼ Rmnð�; 	ÞSmnð�; 	Þeim� where 	 ¼ fk=2 with f
being the semifocal distance in this system. In the last
equation, Rmn, Smn represent radial and angular prolate

spheroidal wave functions of orders m, n. Figure 5(a)
provides a two-dimensional plot of the electric vector
potential F associated with a TE accelerating mode, within
the x-z plane. The dynamical evolution of this beam (after
a Gaussian apodization) is depicted in Fig. 5(b). The self-
similar behavior of this field distribution is again evident.
Similarly, accelerating solutions in oblate spheroidal coor-
dinates can also be found under TE or TM conditions.
In conclusion we have demonstrated that Maxwell’s

equations can admit three-dimensional fully vectorial
accelerating beams. One such class of solutions was found
to follow elliptic trajectories and hence experiencing a
nonuniform acceleration, in spite of the fact that the cor-
responding intensity features do not remain invariant dur-
ing propagation. Experimental observations of these
elliptically accelerating beams were reported, corroborat-
ing our predictions. Other 3D families of accelerating wave
fronts were also theoretically explored including TE or TM
spherical and spheroidal wave functions. Our results may
be of importance in physical settings where vectorial non-
paraxiality is required. These features could be potentially
useful in nanophotonics, plasmonics, microparticle ma-
nipulation, and ultrasonics, to mention a few.
This work was supported by the Air Force Office of
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